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Applications of optically and electrically driven
nanoscale bowtie antennas
Zhongjun Jiang†, Yingjian Liu† and Liang Wang*

Optical antennas play an important role in optical field manipulation. Among them, nanoscale bowtie antennas have been
extensively  studied for  its  high confinement  and enhancement.  In  this  mini-review,  we start  with  a  brief  introduction of
bowtie antennas and underlying  physics.  Then we review the  applications  with  respect  to  optically  and electrically  ex-
cited nanoscale bowtie antennas. Optically driven bowtie antennas enable a set of optical applications such as near-field
imaging/trapping,  nonlinear  response,  nanolithography,  photon  generation  and  detection.  Finally,  we  put  emphasis  on
the  principle  and  applications  of  electrically  driven  bowtie  antennas,  an  emerging  method  of  generating  ultrafast  and
broadband tunable nanosources. In a word, nanoscale bowtie antennas still have great potential research value to explore.
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Introduction
It has been a long time for researchers to explore meth-
ods to overcome the diffraction limit. Although light can
be  squeezed  through  a  sub-wavelength  hole1 leading  to
lateral resolution on the order of the hole size, its trans-
mission is very limited based on Bethe’s law2. However, it
has been noticed that bowtie antennas (Fig. 1(a)) enable
simultaneous high  resolution  and  enhanced  transmis-
sion3, which is suitable for near-field imaging techniques
such as scanning near-field optical microscopy (SNOM)
and  near  field  lithography.  This  phenomenon  can  be
simply explained as follows. The two arms of the bowtie
antenna have large surface areas to efficiently collect the
incident radiation. Incident light polarized along the gap
of the bowtie antenna generates surface currents to carry
surface charge to the sharp tips (Fig. 1(c)). The opposite
oscillating surface charges at the tips behave like an oscil-

lating  electric  dipole  which  radiates  light  through  the
aperture.  Therefore,  light  with  proper  polarization  can
pass  through  the  bowtie  antenna  without  experiencing
much  intensity  decay.  The  transmitted  light  is  confined
underneath the nanoscale gap region offering an optical
resolution far beyond the diffraction limit.

In  a  more  general  way,  bowtie  antennas  (hereafter,
bowties) acting as optical antennas, receive and emit ra-
diation  as  they  do  in  the  microwave  regime5,6.  It  means
that  bowties,  regardless  of  whether  it  is  apertured  (Fig.
1(a))  or  gaped  (Fig. 1(b)), can  convert  an  external  elec-
tromagnetic  field  into  a  confined  energy7,8,  and  vice
versa.  Field confinement and enhancement presented in
the gap region, thus can be utilized to achieve a variety of
optical applications.

Since  the  early  2000s,  bowtie  structures  have  been
used as electrodes in molecular engineering9 and applied 
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in molecular  junctions  to  investigate  electrolumines-
cence10,  and  high-conductivity11,12. Thanks  to  the  devel-
opment  of  nanofabrication,  bowties  in  nanometer  scale
dimensions13−15 brought about widespread optical applic-
ations.  In  2006,  sub-diffraction  nanoscale  lithography
with  bowties4,16 have  been  demonstrated.  Nanolaser
based on bowties array was achieved by exciting dye mo-
lecules centered in the gap, in 201217. In 2018, enhanced
absorption via bowtie arrays in 2D black phosphorus was
achieved based on the high transmission of  the antenna
and  a  perfect  polarization  selection  ratio  is  observed18.
Recently,  nanoscale  bowties  were  reported to  be  excited
by not only external  light,  but  also electricity19,  showing
its advantages  in  high  intensity  and  ultrafast  optical  re-
sponse. As we will show, the last decades have witnessed
the  booming  development  of  bowties  under  the  optical
or electrical excitation.

This paper aims to review applications of optically and
electrically driven  nanoscale  bowties.  Since  rapid  ad-
vances have been made in this area, it is difficult to cover
all  the related references in this  review. Nonetheless,  we
hope the  present  review  arouse  interest  among  the  re-
searchers in this subject.
 

Optically driven nanoscale bowties
Due  to  the  high  enhancement  and  confinement  of
bowties, strong electric field localizations20−22 (hot spots)
are  presented  in  the  gap.  These  properties  promise
bowties broad applications  ranging from light  transmit-
ting, frequency  doubling/tripling,  focusing,  and  genera-
tion to detection. In this section, we present an overview
of the applications of optically excited bowties.
 

Nanoimaging and nanotrapping
As  mentioned  before,  bowties  exhibit  highly  enhanced
fields  under  the  illumination  of  light.  The  consequently
enhanced light  transmission  guarantees  a  set  of  nano-
technologies such as nanoimaging and trapping.

Near-field  imaging  techniques,  e.g.,  SNOM,  utilizes
evanescent waves to generate sub-diffraction-limit resol-
ution. As  the  evanescent  components  decay  exponen-
tially, SNOM uses a tapered fiber23 as a probe and needs
to work  close  to  the  sample  surface.  Even  in  this  situ-
ation, the light coupling efficiency is severely limited be-
cause of the poor transmission of the fiber tip. Therefore
subwavelength  apertures  are  usually  constructed  on  the
tip apex to boost  the light  collection.  Bowtie  apetures3,24

are  favored over  other  apertures  owing to  its  giant  light
field  enhancement13.  Wang  et  al.3 fabricated  metallic
bowtie  and  square  apertures  on  the  quartz  wafer,  and
compared their far-field transmission (Fig. 2(a)). Results
indicated that the transmission was enhanced exceeding
one order  of  magnitude from bowtie  apertures  than the
squared ones with the same opening areas. Bowtie aper-
tures  were  then  milled  on  the  SNOM  probe  (Fig. 2(b)),
showing  a  seven  times  higher  near-field  measurement
counts than the regular aperture probe (Fig. 2(c)).

Strong energy confinement  with  a  high optical  gradi-
ent  provided  by  bowties  also  promises  applications  in
optical  trapping25−27.  Using  a  bowtie  plasmonic  aperture
that  was  patterned on a  tapered metal-coated  fiber25,  50
nm  polystyrene  beads  were  successfully  captured,
demonstrating  the  feasibility  of  nanoparticle  trapping.
Notably, 4-nm  quantum  dot  was  experimentally  repor-
ted to be trapped in a  deep potential  well  (Fig. 2(e)) us-
ing  the  three-dimensional  tapered  5-nm-gap  bowtie
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Fig. 1 | Bowtie apertured (a) and gaped (b) antennas. (c) Induced surface charges and electric dipole when incident electric field polarizes along

the tips. Figure reproduced with permission from: (a-b) ref.4, Copyright 2006 American Chemical Society.
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aperture antenna (Fig. 2(d)). 

Nonlinear response
Typically optical  antennas work in the linear regime for
weak excitation fields. In other words, the nonlinearity is
negligible in  most  cases.  The  nonlinear  conversion  effi-
ciency, however,  can  be  resonantly  enhanced  by  local-
ized  surface  plasmons  (LSPs)28 when  appropriate  size
and shape of the nanoantenna are introduced. As a con-
sequence, new interesting phenomena arise,  such as fre-
quency conversion, switching, and modulation29.

Bowties  exhibit  power  enhancement  factors  larger
than 40 dB30, which is beneficial to second or even high-
er  order  harmonics  generation31.  As  shown  in Fig. 3(a),
large arrays  of  antennas  are  often used to  boost  nonlin-
ear conversion efficiency32−34. Nevertheless, Hanke et al.35

observed that  third harmonic (visible  light)  was emitted
by  using  individual  bowtie  antenna  excited  resonantly
with few-cycle femtosecond laser (~0.6 MW/cm2) in the
near infrared. Though the second-order harmonic gener-
ation is partially constrained by the symmetry condition,
it was also observed in the emission spectra with a small
peak  (Fig. 3(b)).  It  has  been  reported30 that  bowties  are
even  capable  of  lowering  the  pulsed  femtosecond  laser
intensities  (from  1013 MW/cm2 to  1011 MW/cm2 level)

that  are  required  to  produce  coherent  extreme-ultravi-
olet (EUV) light  through the  nonlinear  conversion pro-
cess. High harmonics up to 17th were observed.

E4
local

Two-photon photoluminescence  (TPPL)  can  also  oc-
cur  because  of  high  local  fields  at  LSP  resonance  and
shows  dependence on the local E fields15 (Fig. 3(c)). 

Nanolithography
The  development  of  modern  information  technologies
makes a request  of  advanced nano-manufacturing tools.
As we will see, great success has been achieved in nano-
lithography  via  bowties  in  the  last  decades.  Bowties  are
capable  of  focusing  the  incident  ultra-violet  (UV)  light
into  a  small  spot,  showing  remarkable  advantages  over
traditional optical  lithography,  e.g.,  deep  UV  and  ex-
tremely UV lithography, for its low cost and competitive
resolution.  In  2006  Wang  et  al.4 fabricated  apertured
bowties  by  focused  ion  beam  (FIB)  on  a  150  nm  thick
aluminum film (Fig. 4(a)). Under the illumination of 355
nm light,  40×50  nm  lithography  resolution  was  experi-
mentally  reported,  as  shown in Fig. 4(b). Higher resolu-
tion  becomes  more  noticeable  by  fabricating  an  ultra-
small  gap  between  the  antenna  tips  with  the  back-side
milling method36. Another nice experiment was conduc-
ted  by  Sundaramurthy  et  al.16 in  the  same  year.  They
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demonstrated that  by  utilizing  optically  resonant  metal-
lic bowties,  the  production of  polymer resist  nanostruc-
tures  <30  nm  in  diameter  was  achieved  at  a  longer
wavelength of  800  nm  via  the  two-photon  polymeriza-
tion (TPP) effect  (Fig. 4(c) and 4(d).  Researchers37 from
Yonsei  University  has  shown  that  by  using  a  contact
probe made of  bowtie aperture antennas (Fig. 4(e)) illu-
minated by a  405 nm wavelength laser  light,  high-dens-
ity line array patterns were recorded with a half pitch up

to 22 nm (Fig. 4(f)). Further, the line edge roughness was
decreased down to be ~ 17 nm by optimizing the devel-
oping process.  This  work  implies  bowties-based  nano-
lithography  has  a  great  potential  for  practical applica-
tions.

While  sub-diffraction  resolution  (<20  nm)36 can  be
achieved by using bowties, nearly all the aforementioned
results  suffer  from  a  small  depth  of  focus  (DOF:  <10
nm),  which  poses  challenges  for  industrial  production.
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Such a problem is alleviated by combining bowtie anten-
nas  with  metamaterials,  such  as  silver  superlens/reflect-
ors38−40 (Fig. 4(g),  DOF:  ~30  nm)  and  hyperbolic
metamaterials41 (Fig. 4(h), DOF: ~100 nm). However, the
DOF has to be larger than 100 nm to realize convenient
and reliable  pattern  transferring.  This  has  to  be  ad-
dressed  before  taking  bowtie  nanolithography  a  step
closer to widespread applications. 

Nanosources
Miniaturized  photon  sources  are  essential  elements  for
all-optical circuits and nanoscale biosensors. One way of
achieving  lasing  from  nanoscale  resonators  is  to  utilize
LSPs  excited  in  metal  nano-particles.  A  bowtie-shaped
metallic  resonator  are  well  suited  for  this  purpose  as  it
can provide  high  Purcell  factor  thanks  to  the  high  con-
finement,  therefore,  the  ultra-small  effective  mode
volume42.  In addition, the threshold condition for lasing
can be satisfied at room temperature near LSP resonance
wavelengths.  Shown  in Fig. 5(a),  Jae  Yong  Suh  et  al.17

demonstrated that three-dimensional (3D) nano-bowties
array coupled with a  gain medium (IR-140 dye in poly-
urethane)  can  generate  coherent  and  directional  light
emission (Fig. 5(b) and 5(c)). With a mode volume smal-
ler than 0.001(λ/2n)3 (λ, the wavelength and n, the effect-
ive  refractive  index),  room  temperature  optically
pumped  lasing  at  873  nm  with  a  threshold  pump  pulse
fluence of 0.4 mJ/cm2 was observed.

Bowties also show great potential for high-contrast se-
lection of single nanoemitters43.  Kinkhabwala et al.43 ob-
served enhancements of a single molecule’s fluorescence
up  to  a  factor  of  1340  by  using  fluorescent  molecules
coated  bowties.  They  attributed  this  to  the  result  of
greatly  enhanced  absorption  and  an  increased  radiative
emission rate due to the presence of bowties.

Moving  towards  the  infrared  band,  silicon  carbide
bowties (Fig. 5(d)) can serve as a thermal emitter with a
narrowband  (10  cm−1)  spectrum44 (Fig. 5(f)),  which  is
suitable for novel applications such as non-dispersive in-
frared sensing and molecular spectroscopy. The thermal
emission  spectrum  show  a  clear  dependence  on  the
bowtie gap  size,  indicating  that  a  tunable  thermal  emit-
ter  is  achievable.  Numerical  simulations  (Fig. 5(e))  and
near-field  optical  characterization  shade  light  on  the
physical nature  of  the  resonances  in  the  thermal  emis-
sion spectra. 

Photodetectors
The strong plasmonic  enhancement  between the bowtie
tips results  in an enhanced in-plane electric  fields inter-
action  with  two-dimensional  (2D)  materials,  leading  to
an  efficiently  absorbed  external  light.  Consequently,
bowties have been utilized to enhance the responsivity of
photodetectors.  For  example,  Ma et  al.45 reported  that  a
bowtie-enhanced  graphene  waveguide  photodetector
possesses  a  high external  responsivity  of  0.5  A/W and a
fast  frequency  response  up  to  at  least  110  GHz  (Fig.
6(a–c)).  As  a  validation  of  optical  communication,  100
Gbit/s  data  reception  of  two-level  OOK  and  four-level
PAM-4  intensity  encoded  signals  was  successfully
demonstrated  at  C-band  (Fig. 6(d)).  Venuthurumilli  et
al.18 also demonstrated a near infrared photodetector us-
ing black phosphorus embellished by bowties,  as  shown
in Fig. 6(e) and 6(g). High  photocurrent  (an  enhance-
ment  of  70%  in  comparison  to  the  device  without
bowties, Fig. 6(f))  or  polarization  sensitivity  (8.7, Fig.
6(h))  can  be  achieved  with  proper  bowtie  designs  and
orientations. 

Electrically driven nanoscale bowties
Nanoantennas  can  be  excited  by  not  only  the  external
light,  but  also  the  bias  voltages.  They  function  as  an
emerging  optical  nano-source46−49 via the  inelastic  elec-
tron tunneling (IET) process. Related researches can date
back to 1976 in biased metal-insulator-metal junctions50,
and lately, in scanning tunneling microscope (STM) sys-
tems51−53.  Electrically  driven  antennas  bridge  electrical
and optical circuits at the nanoscale and constitute a vi-
brant sub-field of nano-photonics.

We also notice that bowtie-shaped metallic structures
are  widely  used  in  molecule  engineering  as  electrical
leads,  to  exploit  charge  transport  at  the  level  of  single
molecules54. Strictly speaking, however, these devices can
hardly  be  regarded  as  ‘antennas’ due to  the  lack  of  re-
lated functions. Therefore in this section, we will devote
special attention  to  light  emission  from  electrically  ex-
cited bowtie  antennas,  including  the  principles,  fabrica-
tion, characterizations and future directions. 

Underlying mechanisms
A tunnel junction can be made of a thin insulating layer
(usually the air or,  here,  oxide) sandwiched between the
two conducting materials (e.g., here, Al and Au), as illus-
trated  in Fig. 7(a).  When  voltages  are  applied,  electrons
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could  tunnel  through  the  barrier  inelastically  and  give
rise  to  an  energy  transfer  in  the  form  of  (localized  or
propagated)  surface  plasmons  (Fig. 7(b)).  Light  can  be
emitted  by  the  radiative  decay  or  scattering  of  surface
plasmons55.  Since  the  tunneling  process  happens  at  a
time  scale  of  femtoseconds56,57,  it  enables  electrically
driven  antennas  to  be  operated  as  an  ultrafast  optical
source.

Vbias

A typical signature of IET is that the cut-off frequency
ν in electroluminescence  spectrum  is  related  to  the  ap-
plied  bias  voltage  (Fig. 8(c)),  also  known  as  the

hν ⩽ e |Vbias|quantum limit  in which h the Planck’s con-
stant and e the electron charge. Interestingly, an alternat-
ive  mechanism  that  might  explain  the  light  emission
from tunnel  junctions  is  resulted  from  hot-electron  de-
cay58,  where the energies of emitted photons are beyond
the quantum limit. Our focus is concentrated on the IET
process. IET can be theoretically described as an energy-
loss model,  current fluctuations model and spontaneous
emission  model.  We  refer  the  interested  readers  to  the
review59 for  more  mathematic  details.  Here,  we  briefly
give  a  physical  picture  behind  light  emission  from
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electrically driven antennas, as follows.
The (detectable)  electron-to-photon  conversion  effi-

ciency, or, the external quantum efficiency (EQE) driven
by IET can be described as 

EQE = ηIET
0
Ptotal

P0

Prad

Ptotal
, (1)

ηIET
0

P0

Ptotal

Prad P0

Ptotal

ρp

where  is  the source efficiency of  IET in vacuum (in
the order of 10–6 level at visible frequencies with a mod-
est dependence on the details of the barriers59),  is the
power emitted by a dipole in free space,  is the total
power dissipated (not directly to photon emission but of-
ten in the form of  other types of  optical  modes,  such as
LSP modes) by a dipole in an arbitrary environment and

 is the radiated power. The key is that, the ratio of 
and  is  deeply connected to the quantity,  the partial
local density of the optical states (LDOS) , that is59
 

Ptotal

P0
=

ρp
ρ0

, (2)

ρ0where  is  the  vacuum  LDOS.  The  radiation  efficiency

ηrad Prad/Ptotal

ηrad

 is defined as . Both the LDOS and radiation
efficiency (Fig. 8(d) and 8(e))  are profoundly influenced
by  the  geometries  of  bowties  (say,  for  example,  the
bowtie width, height and angle shown in Fig. 8(a)). This
demonstrates  the  practicality  of  tunable  nano-sources
based on bowtie  junctions.  Although the LDOS and 
cannot  be  analytically  expressed  except  a  few  kinds  of
geometries, Eq. (2) points out a viable way of estimating
EQE  by  numerical  simulations  using  the  Green’s
function60. 

Fabrication of bowtie antenna based tunnel
junctions
Tunnel  junctions  can  be  classified  into  two  categories,
namely, the vertical (for example, shown in Fig. 7(a)) and
lateral  junctions  (Fig. 8(a)) ,  in  terms  of  their  orienta-
tions relative  to  the  substrate.  As  for  the  vertical  junc-
tions,  they  are  formed  due  to  the  nature  of  oxidation.
When  it  comes  to  the  lateral  counterpart,  while  the
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G0 = 2e2/h

ultra-small (sub 1 nm) gap is hard to fabricate using cur-
rently  available  nanopatterning  methods61,  electro-mi-
gration62,63 is  a  good  choice  to  generate  bowtie  gap-an-
tenna  tunnel  junctions.  This  process19,64 starts  with  the
patterning  of  weakly-bridged  (the  smallest  linewidth  is
10  nm)  bowties  by  electron  beam  lithography,  followed
by supplying a  gradually-increasing bias  voltages till  the
conductance G of  the  antennas  drops  well  below  the
quantum conductance65  (shown in Fig. 8(b)).
It  is  at this stage that a tiny gap appears.  Our group has
demonstrated a 0.6 nm gap bowtie antenna19 obtained by
a well-controlled electro-migration process. 

Characterizations
Thanks  to  the  well-designed  bowtie  gap-antenna  tunnel
junctions,  we  have  achieved  a  broadband  optical  nano-
source  driven  by  IET  (see Fig. 8(c))  with  peak  emission
power  of  1.4  nW19,  which  is  two  orders  of  magnitude
higher  than  previous  results  (see Table 1).  The  EQE  is
then calculated to be (1.1 ± 0.2) × 10–4.  It  is not hard to
understand  either  from  the  point  view  of  enhanced
LDOS  (see Fig. 8(d)),  or  enhanced  Purcell  factors66 due
to  the  small  mode  volume  in  bowties.  Further,  bowtie-
shaped structures also function as ‘antennas’, providing a

high  radiation  efficiency  (of  course,  at  specific
wavelengths). Accordingly, the emission spectrum can be
tuned  by  engineering  LDOS  and  radiation  efficiency
(Fig. 8(e)),  as  explained  in Underlying  Mechanisms.
Wang  et  al.  recently  have  used  an  approximate  model64

to analytically  calculate  the  resonant  peaks  in  the  emis-
sion  spectra  of  electrically  driven  bowties,  showing  a
good agreement with the experimental results. 

Future directions
Higher efficiencies48 are continually pursued by research-
ers.  While  EQE  roughly  shows  a  dependence  on  the
width d of  tunnel  gap  (d–1)59,  however, d cannot be  un-
limited shortened  because  quantum  mechanics  domin-
ates then. The operating speed and footprint may be pri-
ority depending on applications. In recent years, two-di-
mensional  materials  integrated tunnel  devices67,68 attract
much attention and remain to be further  explored.  Dir-
ectional control of electrically excited sources69−71 via IET
is  also  of  particular  interest  by  using  properly  designed
antenna architectures. 

Summary
Owing to the field confinement and enhancement, nano-
scale bowties can be a good fit for a variety of applications
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such as  near-field  imaging,  nanotrapping,  nanolitho-
graphy, nano-sources  and  photodetectors,  etc.  This  re-
view presents  the  applications  of  nanoscale  bowties  ex-
cited by photons and electrons.  Bowties  can be used for
bridging electronic and photonic components on a same
chip, thus possessing great potential  in high-density op-
tical  storage  and  on-chip  wireless  communication.
Nanoscale  bowties  may meet  great  challenges  but  could
also  lead  photonic  chip  researches  to  a  new  step  in  the
future.
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